汽車零部件異響檢測的靜態(tài)檢測階段是排查隱患的基礎(chǔ)環(huán)節(jié)。技術(shù)人員會先讓車輛處于熄火、靜止?fàn)顟B(tài),圍繞車身展開系統(tǒng)性檢查。對于車門系統(tǒng),他們會反復(fù)開關(guān)車門,仔細(xì)聆聽鎖扣與鎖體結(jié)合時是否有卡頓聲或異常撞擊聲,同時拉動車門內(nèi)把手,感受是否存在拉線松動引發(fā)的摩擦異響。座椅檢測則更為細(xì)致,技術(shù)人員會前后滑動座椅,觀察滑軌與滑塊的配合情況,按壓座椅表面不同區(qū)域,判斷內(nèi)部骨架焊點是否松動,甚至?xí)鹦蹲窝b飾罩,檢查海綿與金屬框架之間是否因貼合不實產(chǎn)生擠壓噪音。此外,后備箱蓋、發(fā)動機蓋的鉸鏈和鎖止機構(gòu)也是重點檢查對象,通過手動抬升、閉合等操作,捕捉可能因潤滑不足或部件磨損產(chǎn)生的異響,為后續(xù)動態(tài)檢測排除基礎(chǔ)故障。研發(fā)團(tuán)隊為優(yōu)化產(chǎn)品性能,在模擬極端環(huán)境下,對新款設(shè)備展開反復(fù)的異響異音檢測測試,不斷改進(jìn)設(shè)計方案。上海機電異響檢測技術(shù)
新型傳感器在異響檢測中的應(yīng)用:隨著科技發(fā)展,新型傳感器為下線異響檢測帶來新的突破。例如,光纖傳感器在異響檢測中的應(yīng)用逐漸增多。光纖傳感器利用光在光纖中傳播的特性,當(dāng)產(chǎn)品發(fā)生振動或產(chǎn)生聲音導(dǎo)致光纖受到微小應(yīng)變時,光的傳輸特性會發(fā)生改變,通過檢測這種變化就能精確測量振動和聲音信號。與傳統(tǒng)傳感器相比,光纖傳感器具有抗電磁干擾能力強、靈敏度高、可分布式測量等優(yōu)勢。在復(fù)雜電磁環(huán)境下的工業(yè)生產(chǎn)中,如大型變電站附近的電機下線檢測,光纖傳感器能穩(wěn)定工作,準(zhǔn)確檢測到電機的細(xì)微異響。此外,MEMS(微機電系統(tǒng))傳感器也在不斷革新異響檢測技術(shù),其體積小、功耗低、成本低,可大量集成在產(chǎn)品表面,實現(xiàn)對產(chǎn)品***、實時的異響監(jiān)測。上海狀態(tài)異響檢測技術(shù)異響下線檢測技術(shù)利用高靈敏度傳感器,捕捉車輛下線時的細(xì)微聲音,識別異常響動,保障出廠品質(zhì)。
電動車的電機與減速器系統(tǒng)異響檢測有其獨特性。技術(shù)人員會將車輛連接到測功機,在 0-120 公里 / 小時的不同轉(zhuǎn)速區(qū)間內(nèi)測試,通過聲學(xué)傳感器采集聲音信號。當(dāng)電機處于低速運轉(zhuǎn)時,若出現(xiàn) “嘯叫” 聲,可能是定子與轉(zhuǎn)子之間的氣隙不均勻;高速狀態(tài)下的 “嗚嗚” 聲,需檢查軸承的潤滑和游隙。減速器的檢測則聚焦于齒輪嚙合,正常嚙合應(yīng)是平穩(wěn)的 “沙沙” 聲,若出現(xiàn) “咔咔” 的沖擊聲,可能是齒輪齒面磨損或嚙合間隙過大。此外,電機控制器的冷卻風(fēng)扇也是異響源之一,若風(fēng)扇葉片與殼體摩擦,會產(chǎn)生 “噠噠” 聲。由于電動車沒有發(fā)動機噪音掩蓋,這些異響會更明顯,因此檢測精度要求更高,通常需將噪音控制在 60 分貝以下。
新能源汽車的電機及電控系統(tǒng)異響檢測有其特殊性。電機運轉(zhuǎn)時的 “高頻嘯叫” 可能與定子繞組的電磁振動相關(guān),而電控系統(tǒng)的繼電器吸合異響則可能暗示接觸不良。檢測過程中,會通過頻譜分析儀分離電機噪音與異響頻率,對比電機轉(zhuǎn)速、電流等參數(shù)的變化規(guī)律,判斷是機械部件磨損還是電子元件故障。汽車零部件異響的耐久性檢測需要通過長期路試完成。部分零部件的異響并非在出廠時立即顯現(xiàn),而是在經(jīng)歷一定里程的行駛后才出現(xiàn),比如輪胎花紋磨損不均導(dǎo)致的 “偏磨異響”、安全帶卷收器彈簧疲勞產(chǎn)生的 “卡頓聲” 等。檢測團(tuán)隊會定期記錄車輛行駛中的異響變化,結(jié)合零部件的損耗程度,分析異響與使用壽命的關(guān)聯(lián),為零部件的耐用性優(yōu)化提供依據(jù)。異響下線檢測技術(shù)利用聲學(xué)成像技術(shù),將車輛產(chǎn)生的異響以直觀的圖像形式呈現(xiàn),方便檢測人員快速識別問題。
先進(jìn)的聲學(xué)檢測系統(tǒng)正逐步提升異響檢測的精細(xì)度。麥克風(fēng)陣列由數(shù)十個高靈敏度麥克風(fēng)組成,均勻布置在檢測車輛周圍或艙內(nèi),能在 30 毫秒內(nèi)捕捉聲音信號,通過波束形成技術(shù)生成三維聲像圖,在顯示屏上以不同顏色標(biāo)注異響源的位置和強度,紅**域**噪音**強。當(dāng)車輛行駛時,系統(tǒng)可實時追蹤異響的移動軌跡,若聲像圖顯示前輪附近出現(xiàn)高頻噪音,結(jié)合頻率分析(通常在 2000-5000Hz),可快速判斷為輪轂軸承問題。對于車內(nèi)異響,該系統(tǒng)能區(qū)分不同部件的聲學(xué)特征,比如塑料件摩擦多為高頻,金屬碰撞則偏向低頻,為技術(shù)人員提供客觀數(shù)據(jù)支持,減少人為判斷的誤差。智能異響下線檢測技術(shù)運用機器學(xué)習(xí)模型,不斷學(xué)習(xí)和積累正常與異常聲音特征,提高檢測的準(zhǔn)確性和可靠性。異響檢測技術(shù)規(guī)范
先進(jìn)的異響下線檢測技術(shù),通過對采集聲音的頻譜分析,能快速定位引發(fā)異響的部件,提升檢測效率與準(zhǔn)確性。上海機電異響檢測技術(shù)
輪胎作為車輛與地面直接接觸的部件,其產(chǎn)生的噪聲和振動對整車 NVH 性能有***影響。輪胎花紋磨損不均、氣壓異常、動平衡不良或輪胎與輪轂安裝不當(dāng),都可能導(dǎo)致行駛過程中出現(xiàn)異常噪聲,如 “嗡嗡” 聲、“噠噠” 聲等,同時還會引起車身振動。在 NVH 檢測中,常用輪胎噪聲測試設(shè)備,在轉(zhuǎn)鼓試驗臺上模擬車輛行駛工況,測量輪胎在不同速度、載荷下的噪聲輻射特性,分析輪胎噪聲的頻率成分和分布規(guī)律。通過輪胎動平衡檢測設(shè)備,檢查輪胎的動平衡狀態(tài),及時校正不平衡量。此外,還可通過輪胎接地壓力分布測試,了解輪胎與地面的接觸情況,優(yōu)化輪胎設(shè)計和車輛懸掛參數(shù),降低輪胎噪聲與振動,提升整車 NVH 性能 。上海機電異響檢測技術(shù)